LCB-990

Leakage Current Measurement Instrument

Instruction Manual

Dear Customer:

Congratulations! Compliance West USA is proud to present you with your LCB-990 leakage current measurement instrument. Your instrument features state-of-the-art accuracy for making leakage current measurements.

To fully appreciate all the features of your new instrument, we suggest that you take a few moments to review this manual. Compliance West USA stands by your instrument with a full one-year warranty. If the need arises, please don't hesitate to call on us.

Thank you for your trust and confidence.

Table of Contents

Section 1	1
An Introduction to leakage current testing with the LCB-990	1
Safety Precautions	
Test Personnel	
Testing Area	1
Section 2	2
LCB-990 Configuration	2
Specifications	2
Configuration 1	2
IEC 60990:1999 Fig. 3: Unweighted touch current	2
Configuration 2	
IEC 60990:1999 Fig.4: Weighted touch current (Perceptioni/Reaction)	
Configuration 3	
IEC 60990:1999 Fig.5: Touch current weighted for let go	
Section 3	
Operating Instructions	4
Setting up your Tester	
Fuse Verification Check	5
Verification of Proper Operation	
Section 4	
Maintenance and Calibration	6
Introduction	
Service Information	6
General Maintenance	6
Cleaning	6
Calibration Information	6
Section 5	7
Technical Assistance	7
Appendix A	8
Tolerance comparison for LCB Configuration 1 (Fig.3)	8
Tolerance comparison for LCB Configuration 2 (Fig.4)	
Tolerance comparison for LCB Configuration 3 (Fig.5)	10

An Introduction to leakage current testing with the LCB-990

Some amount of leakage current exists in all modern electrical and electronic equipment that connects to an AC power source. Leakage current is always unintentional: either due to capacitive coupling from the AC mains circuit to ground (such as exists in AC motors) or as an unintended side effect of EMI suppression components (such as capacitors connected from AC mains to the chassis of the equipment). The amount of leakage current and the measurement methods are governed by various end-product safety standards. These standards often refer to the international standard IEC 60990 - Methods of Measurement of Touch Current and Protective Conductor Current for the design and specification of the leakage current measurement network.

Compliance West USA offers several different leakage current networks to perform testing to numerous end-product standards. These networks comply with the requirements of the International Committee of Testing Laboratories Operational Procedure 113 (IECEE CTL-OP 113 Ed. 1.1). This document outlines requirements for design, calibration, and frequency response of the leakage measurement instrument.

The Compliance West USA LCB leakage current measurement instruments are leakage current networks only - they must be used with a suitable voltmeter to perform leakage current measurements. The voltmeter used can significantly affect the results of the measurement. The voltmeter used must have adequate frequency response to measure the AC leakage-current voltages, and have an input impedance of 1 Megaohm or greater.

Safety Precautions

Leakage current testing is inherently dangerous because the Equipment Under Test (EUT) is generally ungrounded during testing. In some safety standards, an additional single-fault condition is introduced during leakage current testing, which may expose the test operator to hazardous or even lethal voltages.

Test Personnel

Test operators must be properly trained in the procedures for safety performing leakage current testing. Metal jewelry should not be work during testing. Operators should not allow others into the testing area, especially when tests are being conducted. Organization is to be stressed. The operator should keep the test area free of unused leads and equipment.

Testing Area

The area used for conducting leakage current tests should be as remote as possible from normal production line activities. Only personnel conducting the test should be allowed in the area, and it should be taped or roped off to preclude casual entry by other employees. In addition, the area should be marked "WARNING - HIGH VOLTAGE TESTING" or the equivalent to warn others of the nature of the testing taking place.

The bench being used should be non-conductive, and any exposed metal parts should be tied together and grounded.

LCB-990 Configuration

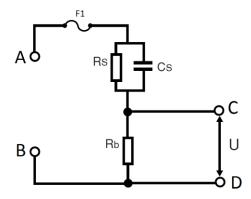
This manual contains a description of the three configurations that make up your LCB-990 instrument. Each configuration contains only one leakage current network.

Your instrument is warranted for a period of one year upon shipment of the instrument to the original purchaser.

Specifications

Each network configuration includes an input fuse to protect against excessive current that could damage the leakage current network. If the LCB-990 is used incorrectly, the internal fusing may not protect the internal network components from damage. Such damage is not covered under warranty. For continued protection against risk of fire or electric shock, replace the internal fuse only with a type and rating as specified in this manual.

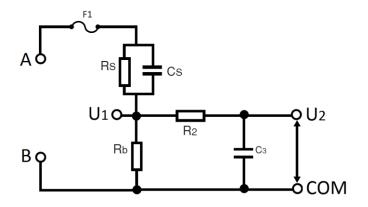
Voltage Rating	0-264Vrms AC to enclosure, O.V. Cat II, 50-440Hz at input terminals ¹		
Current Rating	100mA maximum		
Fuse Rating (F1)	Littelfuse 370 series, type TR5, rated 63mA, 250V, fast-acting ²		
Environmental	10-90°rH, non-condensing; 0-2000m altitude; 10-40°C		
Components	High-frequency, low-parasitic, individually selected to maintain		
	+/- 1.0% tolerance		
Frequency Response ³	50/60 Hz: +/- 3.5% accuracy		
	50 Hz - 1MHz: +/- 5% accuracy		


Note 1: Current exceeding the current rating will cause the fuse to open

Note 2: Fuse is specified to hold for 1 hour (not open) at 150% of the fuse current rating

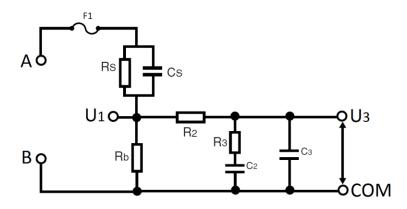
Note 3: LCB observed accuracy is in accordance with CTL Decision Sheet no. DSH 251b and e. See Appendix A for tolerance graphs.

Configuration 1


IEC 60990:1999 Fig. 3: Unweighted touch current

A, B	Input terminals to connect to EUT
Rs	1500 Ohm
Cs	0.22 uF
Rb	500 Ohm
C, D	Output terminals for connection to voltmeter

Configuration 2


IEC 60990:1999 Fig.4: Weighted touch current (Perceptioni/Reaction)

A, B	Input terminals to connect to EUT
Rs	1500 Ohm
Cs	0.22 uF
Rb	500 Ohm
R2	10 kOhm
C3	0.022 uF
U1, U2, COM	Output terminals for connection to voltmeter

Configuration 3

IEC 60990:1999 Fig.5: Touch current weighted for let go.

A, B	Input terminals to connect to EUT
Rs	1500 Ohm
Cs	0.22 uF
Rb	500 Ohm
R2	10 kOhm
R3	20 KOhm
C2	0.0062 uF
C3	0.0091 uF
U1, U3, COM	Output terminals for connection to voltmeter

Operating Instructions

This section describes how to set up and make measurements with your instrument. We recommend that you read the entire section carefully so that you can use all the features of your instrument.

Setting up your Tester

Your LCB leakage current measurement instrument is shipped with six cables that connect to detachable terminal blocks on the front of the instrument. **These cables look similar but they are NOT interchangeable.** One end of each cable is connected to a detachable terminal block as shown in Figure 1 below. The other end of each cable is unterminated: these wires should be connected to the EUT and the voltmeter. The cable with the RED sleeve is the cable where the EUT is connected. The cable with the YELLOW sleeve is where the voltmeter is connected. Note that these cables may be disconnected from the terminal blocks if you choose to use other test leads.

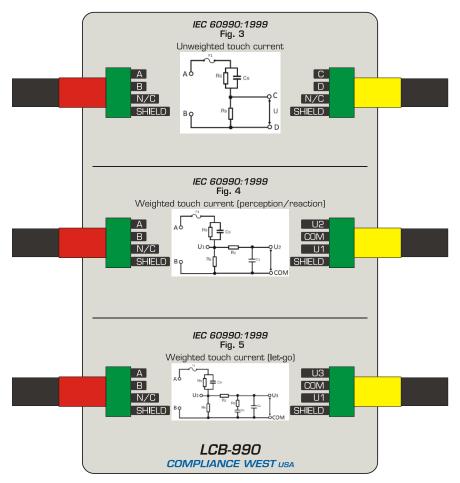


Figure 1 Test lead wiring

Note: If the YELLOW-marked cable for voltmeter connection has only two connections, then only the red and black wires are used (white wire is not used).

The provided test cables are shielded, and the cable shield is connected to the metal enclosure of the LCB instrument. The shielded cables may be left unterminated or grounded as needed for testing.

Fuse Verification Check

To check the fuse, connect an ohmmeter between $\bf A$ and $\bf B$. An open circuit measurement indicates an open fuse, and the fuse must be replaced before use.

Verification of Proper Operation

Once your LCB have passed successfully the fuse verification, you can proceed to perform verification of proper operation, for this matter use a DC ohmmeter. Please refer the following table to know the measurements points and the expected value depending on your LCB configuration. If any of your measurements are out of tolerance please contact the manufacturer for further assistant.

LCB	Measurements points	Expected Value (Ω)	Tolerance (Ω)
Cardia 1	A-B	2000	1980 - 2020
Config 1	A-C	1500	1485 - 1515
(Fig.3)	C-D	500	495 - 505
Config 2 (Fig.4)	A-U1	1500	1485 - 1515
	U1-B	500	495 - 505
	A-B	2000	1980 - 2020
	U1-U2	10000	9900 - 10100
	A-U1	1500	1485 - 1515
Config 3	U1-B	500	495 - 505
(Fig.5)	A-B	2000	1980 - 2020
	U1-U3	10000	9900 - 10100

Maintenance and Calibration

WARNING

MAINTENANCE AND CALIBRATION INSTRUCTIONS ARE FOR QUALIFIED PERSONNEL ONLY. TO AVOID ELECTRIC SHOCK, DO NOT PERFORM ANY SERVICING OTHER THAN THE CONTAINED IN THE OPERATING INSTRUCTIONS.

Introduction

This section of the manual contains maintenance information for the LCB leakage measurement instrument. A 1-year calibration cycle is recommended to maintain the specifications of the factory.

Service Information

The LCB tester is warranted to the original purchaser for a period of 1 year. This warranty does not cover problems due to misuse or neglect. Malfunctions which occur within the limits of the warranty will be corrected at no charge. Mail the instrument postpaid to the manufacturer. Dated proof of purchase is required for all in-warranty repairs. The manufacturer is also available for calibration and / or repair of instruments that are beyond their warranty period. Contact the manufacturer for a cost quotation. Ship the instrument and your remittance according to the instructions given by the manufacturer.

General Maintenance

To avoid contaminating the PWB with oil from your fingers, handle it by the edges or wear gloves. If the PWB becomes contaminated, refer to the cleaning procedures given later in this section.

WARNING

Remove all external connections before opening the LCB. Do not connect the LCB to hazardous live circuits with the internal circuitry exposed.

Cleaning

CAUTION

Do not use aromatic hydrocarbons or chlorinated solvents for cleaning. These solutions will react with the plastic materials used in the instrument.

Clean the exterior of the LCB with a mild solution of detergent and a damp sponge. Clean dust from the PWB with clean, dry, low pressure (<20 psi).

Calibration Information

The Calibration Procedure should be performed annually and any time the instrument has been repaired. The calibration procedure should be performed at an ambient temperature of $23^{\circ}\text{C} \pm 5^{\circ}\text{C}$ (73.4°F ±9°F). The Calibration procedure must be performed by qualified personnel, for more information contact Compliance West USA.

Technical Assistance

Technical Assistance from Compliance West USA is available:

Phone: (800) 748-6224

Hours: 8:00 AM - 4:00 PM Pacific Time.

Also available on our web site at: www.compwest.com

Contact:

Compliance West USA 650 Gateway Center Way, Suite D San Diego, CA., 92102 United States of America.

Phone: (619) 878-9696 **FAX**: (619) 794-0404

Appendix A

Tolerance comparison for LCB Configuration 1 (Fig.3)

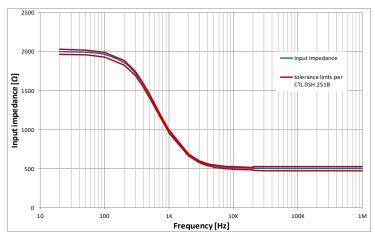


Figure A1. Input Impedance vs. Frequency.

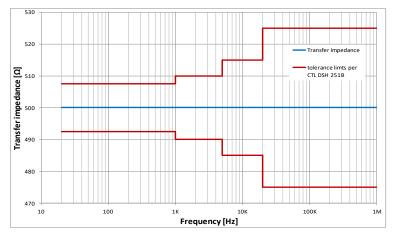


Figure A2. Transfer Impedance vs. Frequency.

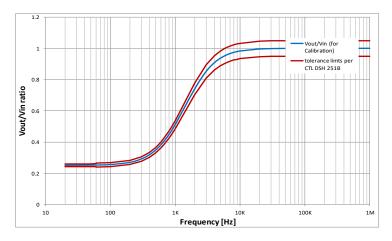


Figure A3. Vout/Vin Ratio vs. Frequency.

Tolerance comparison for LCB Configuration 2 (Fig.4)

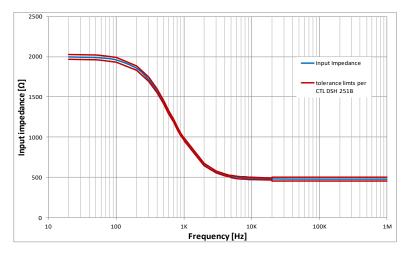


Figure A4. Input Impedance vs. Frequency.

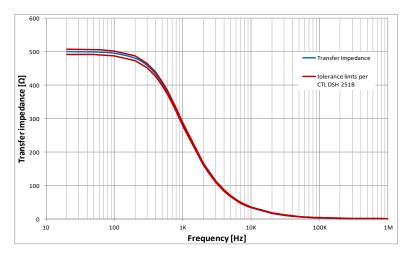


Figure A5. Transfer Impedance vs. Frequency.

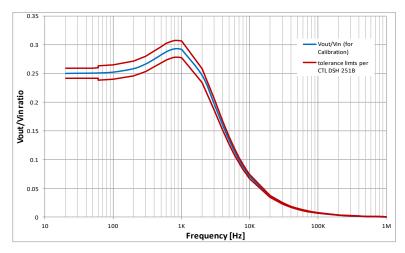


Figure A6. Vout/Vin Ratio vs. Frequency.

Tolerance comparison for LCB Configuration 3 (Fig.5)

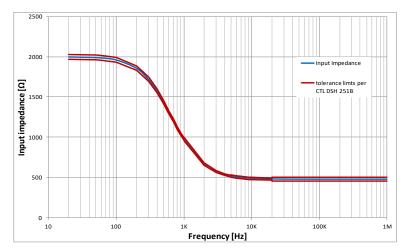


Figure A7. Input Impedance vs. Frequency.

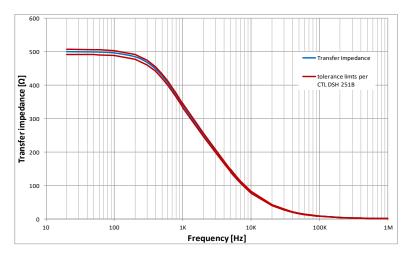


Figure A8. Transfer Impedance vs. Frequency.

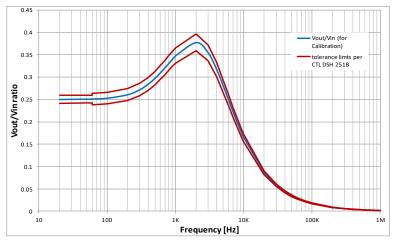


Figure A9. Vout/Vin Ratio vs. Frequency.